Bound to Succeed: transcription factor binding-site prediction and its contribution to understanding virulence and environmental adaptation in bacterial plant pathogens.
نویسندگان
چکیده
Bacterial plant pathogens rely on a battalion of transcription factors to fine-tune their response to changing environmental conditions and to marshal the genetic resources required for successful pathogenesis. Prediction of transcription factor binding sites (TFBS) represents an important tool for elucidating regulatory networks and has been conducted in multiple genera of plant-pathogenic bacteria for the purpose of better understanding mechanisms of survival and pathogenesis. The major categories of TFBS that have been characterized are reviewed here, with emphasis on in silico methods used for site identification and challenges therein, their applicability to different types of sequence datasets, and insights into mechanisms of virulence and survival that have been gained through binding-site mapping. An improved strategy for establishing E-value cutoffs when using existing models to screen uncharacterized genomes is also discussed.
منابع مشابه
Comparative modelling of 3D-structure of Geobacter sp. M21 (a metal reducing bacteria) Mn-Fe superoxide dismutase and its binding properties with bisphenol-A, aminotriazole and ethylene-diurea
Superoxide dismutase play important roles in iron-respiratory bacteria such as Geobacteraceae as an antioxidant defense, and probably an effective enzyme of electron transfer network. Regarding the application of iron-respiratory bacteria in environmental biotechnology particularly biodegradation and bioremediation, understanding the mechanism of inhibition/induction of superoxide dismutase by ...
متن کاملThe Virulence Regulator Rns Activates the Expression of CS14 Pili
Although many viral and bacterial pathogens cause diarrhea, enterotoxigenic E. coli (ETEC) is one of the most frequently encountered in impoverished regions where it is estimated to kill between 300,000 and 700,000 children and infants annually. Critical ETEC virulence factors include pili which mediate the attachment of the pathogen to receptors in the intestinal lumen. In this study we show t...
متن کاملCo-regulation of Iron Metabolism and Virulence Associated Functions by Iron and XibR, a Novel Iron Binding Transcription Factor, in the Plant Pathogen Xanthomonas
Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur) functions as ...
متن کاملTwo-Component Signaling System VgrRS Directly Senses Extracytoplasmic and Intracellular Iron to Control Bacterial Adaptation under Iron Depleted Stress
Both iron starvation and excess are detrimental to cellular life, especially for animal and plant pathogens since they always live in iron-limited environments produced by host immune responses. However, how organisms sense and respond to iron is incompletely understood. Herein, we reveal that in the phytopathogenic bacterium Xanthomonas campestris pv. campestris, VgrS (also named ColS) is a me...
متن کاملAn Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters
Oomycete pathogens produce a large number of CRN effectors to manipulate plant immune responses and promote infection. However, their functional mechanisms are largely unknown. Here, we identified a Phytophthora sojae CRN effector PsCRN108 which contains a putative DNA-binding helix-hairpin-helix (HhH) motif and acts in the plant cell nucleus. Silencing of the PsCRN108 gene reduced P. sojae vir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular plant-microbe interactions : MPMI
دوره 26 10 شماره
صفحات -
تاریخ انتشار 2013